Mark Scheme (Result)

October 2019

Pearson Edexcel International Advanced Level

In Biology (WBI11) Paper 01
Molecules, Diet, Transport and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Additional guidance	Mark
1(a)(i)	A description that includes the following points:	ACCEPT a higher chance, positive correlation, smoking higher than not smoking ACCEPT a higher chance, positive correlation	(2)

Question number	Answer	Additional guidance	Mark		
1(a)(ii)	An explanation that includes two of the following points:				
• smokers still have greater risk because cigarettes still contain					
same chemicals / smokers have lower risk than before because					
people smoking \{e cigarettes / fewer cigarettes\} (1)				\quad	Accept no change if supported by an
:---					
explanation	\quad	risk lower because people more aware of other risk factors /			
:---					
risk higher because of other named risk factor (1)					
- risk lower as improvements in health care (1)	\quad	ACCEPT more aware of their health			
:---					
e.g. poor diet, junk food, high fat, high salt, less exercise, obesity					

Question number	Answer	Mark

1(b)	$\mathbf{C} 57.1 \times 10^{6}$	
The only correct answer is \mathbf{C}.		
	A is incorrect because $(17.7$ million $\div 31) \times 100=57.1 \times 10^{6}$ \boldsymbol{B} is incorrect because $(17.7$ million $\div 31) \times 100=57.1 \times 10^{6}$ \boldsymbol{D} is incorrect because $(17.7$ million $\div 31) \times 100=57.1 \times 10^{6}$	(1)

Question number	Answer	Additional guidance	Mark
2(a)	A diagram that shows the following: - genotype of parents / alleles in the gametes (1) - genotypes of offspring as BB, Bb and bb (1) - corresponding phenotypes shown as brown (BB and Bb) and white (bb) (1)	Accept other letters used for alleles ACCEPT if clear from any ratios or percentages given CE throughout	(3)

Question number	Answer	Additional guidance	Mark
2(b)	An answer that includes the following points:	CE from part (a)	
	• number of homozygous brown rabbits shown (1)		
	• number of heterozygous brown rabbits shown (1)	$\mathrm{Bb}=142$	

Question number	Answer	Additional guidance	Mark

3(b)	An explanation that includes the following points: - because \{gene / (defective) allele\} located on the X chromosome (1) - because defective allele is recessive (1) - therefore, males with \{defective / haemophilia\} allele will only have that allele (1)	ACCEPT X-linked disease / sexlinked disease / inherited on the X chromosome ACCEPT \{mutated / affected\} allele / \{haemophilia / disease\} is recessive ACCEPT males will not carry a \{healthy / normal\} allele females need \{both defective alleles / to be homozygous for defective alleles\} to have haemophilia	(3)

Question number	Answer	Mark
4(a)(i)	B The only correct answer is \mathbf{B} \boldsymbol{A} is incorrect because glucose and fructose are monosaccharides and lactose, maltose and sucrose are disaccharides C is incorrect because glucose and fructose are monosaccharides and lactose, maltose and sucrose are disaccharides D is incorrect because glucose and fructose are monosaccharides and lactose, maltose and sucrose are disaccharides	(1)

Question number	Answer	Mark
4(a)(ii)	B glycosidic	
The only correct answer is B.		
\boldsymbol{A} is incorrect because ester bonds join organic acids and alcohols together		
C is incorrect because hydrogen bonds do not join two monosaccharides together		
\boldsymbol{D} is incorrect because phosphodiester bonds join phosphate group to an organic alcohol		

Question number	Answer	Additional guidance	Mark
4(a)(iii)	An answer that includes two of the following points: - monosaccharides are not more or less sweet than disaccharides (1)	- a disaccharide is the least sweet and a monosaccharide is the sweetest (1)	ACCEPT lactose is the least sweet disaccharide and glucose is the least sweet monosaccharide

Question number	Answer	Additional guidance	Mark
4(a)(iv)	An answer that includes three of the following points: - \{sugars / sugar solutions\} are tasted (1) - sugars should be the same concentration (1) - mouth is rinsed out between each sugar (1) - the (relative) sweetness is compared to sucrose (1) OR If students describe Benedict's test, allow the following two marks: - add Benedict's solution and heat (1) - rank sugar by \{described colour changes / time taken to reach specific colour\} (1)	ACCEPT sampled IGNORE amount ACCEPT the sugars are \{compared against each other / given a rating\}	(3)

Question number	Answer	Additional guidance	Mark
4(b)	An answer that includes the following points: similarities: - both (polymers) composed of a glucose (1) - both contain 1-4 glycosidic \{bonds / links $\}$ (1) differences: - amylose has \{1-4 glycosidic bonds (only) / no 1-6 glycosidic bonds\} and amylopectin has (1-4 and) 1-6 glycosidic bonds (1)	DO NOT piece together unless in same sentence or two linked adjacent sentences ALLOW composed of glucose if a glycosidic bonds are given ACCEPT amylose is \{a chain / helical / linear / unbranched\} and amylopectin is branched NB 'amylose has 1-4 glycosidic bonds and amylopectin has 1-4 and 1-6 glycosidic bonds' scores mark points 2 and 3	(3)

Question number	Answer					Mark
5(a)		Cell transport mechanism				
	Feature	active transport only	facilitated diffusion only	both active transport and facilitated diffusion	not true for either active transport or facilitated diffusion	
	passive process		X			
	membrane proteins involved			X		
	direction of transport can be up the concentration gradient	X				(3)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 5(b)(i) } & \text { An explanation that includes the following points: } & \begin{array}{l}\text { NB ACCEPT references to } \\ \text { concentration of substances for } \\ \text { uptake } \\ \text { ACCEPT facilitated diffusion for }\end{array} \\ \text { diffusion throughout }\end{array} \quad \begin{array}{l}\text { - substance K is taken up by active transport because active } \\ \text { transport \{works against / not affected by\} the concentration } \\ \text { gradient (1) }\end{array} \quad \begin{array}{l}\text { ACCEPT substance K continuously } \\ \text { taken up by diffusion \{and } \\ \text { equilibrium has not been reached /as } \\ \text { there is a concentration gradient }\end{array}\right\}$

		mark points awarded	

Question number	Answer	Additional guidance	Mark
5(b)(ii)	An answer that includes the following points:		
- a line that starts at the same point (1) Less steep and levels off at same concentration as substance L at 5 hours (1)			

(2)

Question number	Answer	Additional guidance	Mark
5(c)(i)	An explanation that includes two of the following points: \bullet - the membrane is fluid (1)	DO NOT ACCEPT flexible / strong IGNORE unqualified references to fluid mosaic structure / model	
- phospholipids (and proteins) can move (within the membrane) (1)	ACCEPT more phospholipids added to the membrane	(2)	

Question number	Answer	Additional guidance	Mark
5(c)(ii)	An explanation that includes the following points: - (more pseudopodia would) increase the surface area (of the pseudopodia / amoeba / cell / membrane) (1) - therefore \{uptake / diffusion\} would be faster (1)	ACCEPT 'it' as meaning uptake rate increases IGNORE uptake \{increases / greater\} references to active transport	(2)

Question number	Answer	Additional guidance	Mark		
6(a)	• methionine leucine isoleucine tyrosine (1)	ACCEPT met leu iso tyr			
combinations of names and					
abbreviations				\quad (1)	
:---					

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (\mathbf { i })}$		All three correct = 2 marks Any one or two correct = 1 mark IGNORE point mutation throughout	
	Base number 3 becomes cytosine (C) substitution		
Base number 6 becomes number 5 in the sequence deletion	IGNORE swapping mutation		

	Base number 9 becomes number 10 in the sequence insertion	IGNORE addition / frameshift	

Question number	Answer
*6(b)(ii)	Indicative content: Substitution: - only affects one triplet codon - may not change the amino acid - e.g. number 6 becomes A, would still code for leucine - may change amino acid - e.g. number 1 becomes G, resulting in valine - may result in a stop codon - e.g. number 12 becomes G Deletion: - one base removed will shift the reading frame back one place - all amino acids after the mutation will be affected - closer to the start of the gene the greater the affect - fewer amino acids coded for - e.g. remove base 4 and sequence becomes methionine serine phenylalanine threonine Insertion: - one base added will shift the reading frame forward one place - all amino acids after the mutation will be affected - closer to the start of the gene the greater the affect - e.g. add C between numbers 9 and 10 and sequence becomes leucine proline serine

Aspects to comment on:

1. Substitution changing the amino acid
2. Deletion changing sequence
3. Insertion changing sequence
4. Stop codons appearing shortening the sequence
5. Substitution may have no effect
6. Position of \{insertion / addition\} significant

Level 1

1 mark : correct statement about mutations

2 marks : 1 aspect commented on with a corresponding illustration OR 2 or more aspects commented on but no illustrations

Level 2

3 marks : 2 aspects commented on with corresponding illustrations OR 3 or more aspects commented but only 1 or 2 illustrations

4 marks : 3 aspects commented on with corresponding illustrations

Level 3

	5 marks : 4 aspects commented on with corresponding illustrations
6 marks : 5 aspects commented on with corresponding illustrations	

Question number	Answer	Additional guidance	Mark
7(a)(i)	An answer that includes the following points: - difference between systolic and diastolic pressure is $5.3(\mathrm{kPa})$ (1) - person is healthy (because pulse pressure is greater than 3.75 kPa (1)	ALLOW 35 / 35.3 ALLOW (because $\{35 / 35.3\}$ \% is higher than 25\%) CE applied to second point and comparison adjusted accordingly	(2)

Question number	Answer	Additional guidance	Mark
7(a)(ii)	An answer that includes the following points: - suitable estimated values chosen (1) - answer calculated (1)	ACCEPT values in range of (diastolic) 9.5 to 9.7 and (systolic) 14.8 to 15.0 to OR (systolic) 15 and (Diastolic) 10 $11 \text { / } 11.2 \text { / } 11.3 \text { / } 11.4 \text { / } 11.5$ OR 11.7 Correct answer with no working gains 2 marks	(2)

Question number	Answer	Additional guidance	Mark
7(a)(iii)	An explanation that includes the following points: - insufficient \{oxygen / glucose\} delivered to the \{cells / tissues\} (1)	ACCEPT oxygenated blood	
- credit an appropriate consequence (1)	e.g. breathless, lack of energy, stroke, hypoxia, decrease in respiration, dizziness IGNORE death		

Question number	Answer	Mark
$\mathbf{7 (b) (i)}$	D(i) πr^{4}	
The only correct answer is D. \boldsymbol{A} is incorrect because $\triangle P$ cancels out \boldsymbol{B} is incorrect because $\triangle P$ cancels out C is incorrect because the equation is upside down	(1)	

Question number	Answer	Mark		
$\mathbf{7 (b) (i i) ~}$	C radius of the blood vessel lumen			
The only correct answer is \mathbf{C}				
\boldsymbol{A} is incorrect because $\Delta \mathrm{P}$ cancels out				
\boldsymbol{B} is incorrect because length is only to the power 1 and radius is to the power 4 and vessels can change their diameter				
\mathbf{D} is incorrect because the thickness of the wall is not part of the calculation.			\quad (1)	(1)
:---				

Question number	Answer	Additional guidance	Mark
7(b)(iii)	An explanation that includes the following points: - (inside of arteries lined with layer of unfolded) \{flattened / smooth\} \{endothelial cells / endothelium\} (1)		(2)

 Question number Answer Additional guidance Mark 7(c)(i) An explanation that includes the following points: - because elastic fibres (in wall of arteries) can \{stretch / expand\} (1) IGNORE recoil - therefore \{widening the lumen / increasing the diameter (of the artery)\} (1) - wall contains collagen to increase the strength (1) DO NOT ACCEPT recoil

Question number	Answer	Additional guidance	Mark
7(c)(ii)	An explanation that includes the following points: - (if compliance is reduced) damage to the endothelium lining (1) - therefore, \{cholesterol / (cholesterol) plaque\} can build up (1) - therefore \{narrowing / blocking\} the blood vessel (1) - reducing \{flow of blood / oxygen\} to the heart \{cells / tissues / muscle\} (1)	N.B A reference to an artery must be made for 3 marks to be awarded ACCEPT atheroma IGNORE by clots	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a)}$	A diagram that shows:	Accept charged groups	
	• COOH group and NH_{2} group (1)		
• H and the aspartate R group (1)		(3)	

Question number	Answer	Additional guidance	Mark
8(b)	An explanation that includes the following points: - because (the urea cycle has) many \{stages / steps / reactions\} (1)		
- therefore, the product of one stage is the substrate of the next stage (1)	ACCEPT each stage has \{new / different\} substrate / different substrates (in the process)		(3)

	- substrates \{bind / attach / fit to (specific) active site / credit reference to lock and key theory / credit reference to induced fit (1)	ACCEPT if active site is referred to in the context of an enzyme-substrate complex	

Question number	Answer	Additional guidance	Mark
8(c)(i)	An answer that includes three of the following points: -genetic screening / named screening method / looking for a mutation - biochemical test / blood test / description of named molecule whose level would be different	IGNORE where the molecules maybe found	(3)

Question number

| a marks : three descriptions and three explanations | |
| :--- | :--- | :--- |
| | |
| | |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

